\(\int \frac {(e \sin (c+d x))^{7/2}}{a+b \sec (c+d x)} \, dx\) [233]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 516 \[ \int \frac {(e \sin (c+d x))^{7/2}}{a+b \sec (c+d x)} \, dx=-\frac {b \left (a^2-b^2\right )^{5/4} e^{7/2} \arctan \left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt [4]{a^2-b^2} \sqrt {e}}\right )}{a^{9/2} d}-\frac {b \left (a^2-b^2\right )^{5/4} e^{7/2} \text {arctanh}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt [4]{a^2-b^2} \sqrt {e}}\right )}{a^{9/2} d}+\frac {2 \left (5 a^4-28 a^2 b^2+21 b^4\right ) e^4 \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{21 a^5 d \sqrt {e \sin (c+d x)}}+\frac {b^2 \left (a^2-b^2\right )^2 e^4 \operatorname {EllipticPi}\left (\frac {2 a}{a-\sqrt {a^2-b^2}},\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{a^5 \left (a^2-b^2-a \sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {b^2 \left (a^2-b^2\right )^2 e^4 \operatorname {EllipticPi}\left (\frac {2 a}{a+\sqrt {a^2-b^2}},\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{a^5 \left (a^2-b^2+a \sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {2 e^3 \left (21 b \left (a^2-b^2\right )-a \left (5 a^2-7 b^2\right ) \cos (c+d x)\right ) \sqrt {e \sin (c+d x)}}{21 a^4 d}+\frac {2 e (7 b-5 a \cos (c+d x)) (e \sin (c+d x))^{5/2}}{35 a^2 d} \]

[Out]

-b*(a^2-b^2)^(5/4)*e^(7/2)*arctan(a^(1/2)*(e*sin(d*x+c))^(1/2)/(a^2-b^2)^(1/4)/e^(1/2))/a^(9/2)/d-b*(a^2-b^2)^
(5/4)*e^(7/2)*arctanh(a^(1/2)*(e*sin(d*x+c))^(1/2)/(a^2-b^2)^(1/4)/e^(1/2))/a^(9/2)/d+2/35*e*(7*b-5*a*cos(d*x+
c))*(e*sin(d*x+c))^(5/2)/a^2/d-2/21*(5*a^4-28*a^2*b^2+21*b^4)*e^4*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*
c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2))*sin(d*x+c)^(1/2)/a^5/d/(e*sin(d*x+c))^(1/2)-b^2
*(a^2-b^2)^2*e^4*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticPi(cos(1/2*c+1/4*Pi+1/2
*d*x),2*a/(a-(a^2-b^2)^(1/2)),2^(1/2))*sin(d*x+c)^(1/2)/a^5/d/(a^2-b^2-a*(a^2-b^2)^(1/2))/(e*sin(d*x+c))^(1/2)
-b^2*(a^2-b^2)^2*e^4*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticPi(cos(1/2*c+1/4*Pi
+1/2*d*x),2*a/(a+(a^2-b^2)^(1/2)),2^(1/2))*sin(d*x+c)^(1/2)/a^5/d/(a^2-b^2+a*(a^2-b^2)^(1/2))/(e*sin(d*x+c))^(
1/2)+2/21*e^3*(21*b*(a^2-b^2)-a*(5*a^2-7*b^2)*cos(d*x+c))*(e*sin(d*x+c))^(1/2)/a^4/d

Rubi [A] (verified)

Time = 2.05 (sec) , antiderivative size = 516, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3957, 2944, 2946, 2721, 2720, 2781, 2886, 2884, 335, 218, 214, 211} \[ \int \frac {(e \sin (c+d x))^{7/2}}{a+b \sec (c+d x)} \, dx=\frac {2 e (e \sin (c+d x))^{5/2} (7 b-5 a \cos (c+d x))}{35 a^2 d}-\frac {b e^{7/2} \left (a^2-b^2\right )^{5/4} \arctan \left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt {e} \sqrt [4]{a^2-b^2}}\right )}{a^{9/2} d}-\frac {b e^{7/2} \left (a^2-b^2\right )^{5/4} \text {arctanh}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt {e} \sqrt [4]{a^2-b^2}}\right )}{a^{9/2} d}+\frac {b^2 e^4 \left (a^2-b^2\right )^2 \sqrt {\sin (c+d x)} \operatorname {EllipticPi}\left (\frac {2 a}{a-\sqrt {a^2-b^2}},\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),2\right )}{a^5 d \left (-a \sqrt {a^2-b^2}+a^2-b^2\right ) \sqrt {e \sin (c+d x)}}+\frac {b^2 e^4 \left (a^2-b^2\right )^2 \sqrt {\sin (c+d x)} \operatorname {EllipticPi}\left (\frac {2 a}{a+\sqrt {a^2-b^2}},\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),2\right )}{a^5 d \left (a \sqrt {a^2-b^2}+a^2-b^2\right ) \sqrt {e \sin (c+d x)}}+\frac {2 e^3 \sqrt {e \sin (c+d x)} \left (21 b \left (a^2-b^2\right )-a \left (5 a^2-7 b^2\right ) \cos (c+d x)\right )}{21 a^4 d}+\frac {2 e^4 \left (5 a^4-28 a^2 b^2+21 b^4\right ) \sqrt {\sin (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),2\right )}{21 a^5 d \sqrt {e \sin (c+d x)}} \]

[In]

Int[(e*Sin[c + d*x])^(7/2)/(a + b*Sec[c + d*x]),x]

[Out]

-((b*(a^2 - b^2)^(5/4)*e^(7/2)*ArcTan[(Sqrt[a]*Sqrt[e*Sin[c + d*x]])/((a^2 - b^2)^(1/4)*Sqrt[e])])/(a^(9/2)*d)
) - (b*(a^2 - b^2)^(5/4)*e^(7/2)*ArcTanh[(Sqrt[a]*Sqrt[e*Sin[c + d*x]])/((a^2 - b^2)^(1/4)*Sqrt[e])])/(a^(9/2)
*d) + (2*(5*a^4 - 28*a^2*b^2 + 21*b^4)*e^4*EllipticF[(c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(21*a^5*d*Sqrt
[e*Sin[c + d*x]]) + (b^2*(a^2 - b^2)^2*e^4*EllipticPi[(2*a)/(a - Sqrt[a^2 - b^2]), (c - Pi/2 + d*x)/2, 2]*Sqrt
[Sin[c + d*x]])/(a^5*(a^2 - b^2 - a*Sqrt[a^2 - b^2])*d*Sqrt[e*Sin[c + d*x]]) + (b^2*(a^2 - b^2)^2*e^4*Elliptic
Pi[(2*a)/(a + Sqrt[a^2 - b^2]), (c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(a^5*(a^2 - b^2 + a*Sqrt[a^2 - b^2]
)*d*Sqrt[e*Sin[c + d*x]]) + (2*e^3*(21*b*(a^2 - b^2) - a*(5*a^2 - 7*b^2)*Cos[c + d*x])*Sqrt[e*Sin[c + d*x]])/(
21*a^4*d) + (2*e*(7*b - 5*a*Cos[c + d*x])*(e*Sin[c + d*x])^(5/2))/(35*a^2*d)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2781

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> With[{q = Rt[
-a^2 + b^2, 2]}, Dist[-a/(2*q), Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (Dist[b*(g/f), Sub
st[Int[1/(Sqrt[x]*(g^2*(a^2 - b^2) + b^2*x^2)), x], x, g*Cos[e + f*x]], x] - Dist[a/(2*q), Int[1/(Sqrt[g*Cos[e
 + f*x]]*(q - b*Cos[e + f*x])), x], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2944

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*((b*c*(m + p + 1) -
 a*d*p + b*d*(m + p)*Sin[e + f*x])/(b^2*f*(m + p)*(m + p + 1))), x] + Dist[g^2*((p - 1)/(b^2*(m + p)*(m + p +
1))), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*Simp[b*(a*d*m + b*c*(m + p + 1)) + (a*b*c*(m + p + 1
) - d*(a^2*p - b^2*(m + p)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2,
0] && GtQ[p, 1] && NeQ[m + p, 0] && NeQ[m + p + 1, 0] && IntegerQ[2*m]

Rule 2946

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]))/((a_) + (b_.)*sin[(e_.) + (
f_.)*(x_)]), x_Symbol] :> Dist[d/b, Int[(g*Cos[e + f*x])^p, x], x] + Dist[(b*c - a*d)/b, Int[(g*Cos[e + f*x])^
p/(a + b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 3957

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[(g*Co
s[e + f*x])^p*((b + a*Sin[e + f*x])^m/Sin[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = -\int \frac {\cos (c+d x) (e \sin (c+d x))^{7/2}}{-b-a \cos (c+d x)} \, dx \\ & = \frac {2 e (7 b-5 a \cos (c+d x)) (e \sin (c+d x))^{5/2}}{35 a^2 d}-\frac {\left (2 e^2\right ) \int \frac {\left (-a b+\frac {1}{2} \left (5 a^2-7 b^2\right ) \cos (c+d x)\right ) (e \sin (c+d x))^{3/2}}{-b-a \cos (c+d x)} \, dx}{7 a^2} \\ & = \frac {2 e^3 \left (21 b \left (a^2-b^2\right )-a \left (5 a^2-7 b^2\right ) \cos (c+d x)\right ) \sqrt {e \sin (c+d x)}}{21 a^4 d}+\frac {2 e (7 b-5 a \cos (c+d x)) (e \sin (c+d x))^{5/2}}{35 a^2 d}-\frac {\left (4 e^4\right ) \int \frac {-\frac {1}{2} a b \left (8 a^2-7 b^2\right )+\frac {1}{4} \left (5 a^4-28 a^2 b^2+21 b^4\right ) \cos (c+d x)}{(-b-a \cos (c+d x)) \sqrt {e \sin (c+d x)}} \, dx}{21 a^4} \\ & = \frac {2 e^3 \left (21 b \left (a^2-b^2\right )-a \left (5 a^2-7 b^2\right ) \cos (c+d x)\right ) \sqrt {e \sin (c+d x)}}{21 a^4 d}+\frac {2 e (7 b-5 a \cos (c+d x)) (e \sin (c+d x))^{5/2}}{35 a^2 d}+\frac {\left (b \left (a^2-b^2\right )^2 e^4\right ) \int \frac {1}{(-b-a \cos (c+d x)) \sqrt {e \sin (c+d x)}} \, dx}{a^5}+\frac {\left (\left (5 a^4-28 a^2 b^2+21 b^4\right ) e^4\right ) \int \frac {1}{\sqrt {e \sin (c+d x)}} \, dx}{21 a^5} \\ & = \frac {2 e^3 \left (21 b \left (a^2-b^2\right )-a \left (5 a^2-7 b^2\right ) \cos (c+d x)\right ) \sqrt {e \sin (c+d x)}}{21 a^4 d}+\frac {2 e (7 b-5 a \cos (c+d x)) (e \sin (c+d x))^{5/2}}{35 a^2 d}+\frac {\left (b^2 \left (a^2-b^2\right )^{3/2} e^4\right ) \int \frac {1}{\sqrt {e \sin (c+d x)} \left (\sqrt {a^2-b^2}-a \sin (c+d x)\right )} \, dx}{2 a^5}+\frac {\left (b^2 \left (a^2-b^2\right )^{3/2} e^4\right ) \int \frac {1}{\sqrt {e \sin (c+d x)} \left (\sqrt {a^2-b^2}+a \sin (c+d x)\right )} \, dx}{2 a^5}+\frac {\left (b \left (a^2-b^2\right )^2 e^5\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (\left (-a^2+b^2\right ) e^2+a^2 x^2\right )} \, dx,x,e \sin (c+d x)\right )}{a^4 d}+\frac {\left (\left (5 a^4-28 a^2 b^2+21 b^4\right ) e^4 \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)}} \, dx}{21 a^5 \sqrt {e \sin (c+d x)}} \\ & = \frac {2 \left (5 a^4-28 a^2 b^2+21 b^4\right ) e^4 \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{21 a^5 d \sqrt {e \sin (c+d x)}}+\frac {2 e^3 \left (21 b \left (a^2-b^2\right )-a \left (5 a^2-7 b^2\right ) \cos (c+d x)\right ) \sqrt {e \sin (c+d x)}}{21 a^4 d}+\frac {2 e (7 b-5 a \cos (c+d x)) (e \sin (c+d x))^{5/2}}{35 a^2 d}+\frac {\left (2 b \left (a^2-b^2\right )^2 e^5\right ) \text {Subst}\left (\int \frac {1}{\left (-a^2+b^2\right ) e^2+a^2 x^4} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{a^4 d}+\frac {\left (b^2 \left (a^2-b^2\right )^{3/2} e^4 \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)} \left (\sqrt {a^2-b^2}-a \sin (c+d x)\right )} \, dx}{2 a^5 \sqrt {e \sin (c+d x)}}+\frac {\left (b^2 \left (a^2-b^2\right )^{3/2} e^4 \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)} \left (\sqrt {a^2-b^2}+a \sin (c+d x)\right )} \, dx}{2 a^5 \sqrt {e \sin (c+d x)}} \\ & = \frac {2 \left (5 a^4-28 a^2 b^2+21 b^4\right ) e^4 \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{21 a^5 d \sqrt {e \sin (c+d x)}}-\frac {b^2 \left (a^2-b^2\right )^{3/2} e^4 \operatorname {EllipticPi}\left (\frac {2 a}{a-\sqrt {a^2-b^2}},\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{a^5 \left (a-\sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {b^2 \left (a^2-b^2\right )^{3/2} e^4 \operatorname {EllipticPi}\left (\frac {2 a}{a+\sqrt {a^2-b^2}},\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{a^5 \left (a+\sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {2 e^3 \left (21 b \left (a^2-b^2\right )-a \left (5 a^2-7 b^2\right ) \cos (c+d x)\right ) \sqrt {e \sin (c+d x)}}{21 a^4 d}+\frac {2 e (7 b-5 a \cos (c+d x)) (e \sin (c+d x))^{5/2}}{35 a^2 d}-\frac {\left (b \left (a^2-b^2\right )^{3/2} e^4\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a^2-b^2} e-a x^2} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{a^4 d}-\frac {\left (b \left (a^2-b^2\right )^{3/2} e^4\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a^2-b^2} e+a x^2} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{a^4 d} \\ & = -\frac {b \left (a^2-b^2\right )^{5/4} e^{7/2} \arctan \left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt [4]{a^2-b^2} \sqrt {e}}\right )}{a^{9/2} d}-\frac {b \left (a^2-b^2\right )^{5/4} e^{7/2} \text {arctanh}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt [4]{a^2-b^2} \sqrt {e}}\right )}{a^{9/2} d}+\frac {2 \left (5 a^4-28 a^2 b^2+21 b^4\right ) e^4 \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{21 a^5 d \sqrt {e \sin (c+d x)}}-\frac {b^2 \left (a^2-b^2\right )^{3/2} e^4 \operatorname {EllipticPi}\left (\frac {2 a}{a-\sqrt {a^2-b^2}},\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{a^5 \left (a-\sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {b^2 \left (a^2-b^2\right )^{3/2} e^4 \operatorname {EllipticPi}\left (\frac {2 a}{a+\sqrt {a^2-b^2}},\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{a^5 \left (a+\sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {2 e^3 \left (21 b \left (a^2-b^2\right )-a \left (5 a^2-7 b^2\right ) \cos (c+d x)\right ) \sqrt {e \sin (c+d x)}}{21 a^4 d}+\frac {2 e (7 b-5 a \cos (c+d x)) (e \sin (c+d x))^{5/2}}{35 a^2 d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 47.84 (sec) , antiderivative size = 2049, normalized size of antiderivative = 3.97 \[ \int \frac {(e \sin (c+d x))^{7/2}}{a+b \sec (c+d x)} \, dx=\text {Result too large to show} \]

[In]

Integrate[(e*Sin[c + d*x])^(7/2)/(a + b*Sec[c + d*x]),x]

[Out]

((b + a*Cos[c + d*x])*(-1/42*((23*a^2 - 28*b^2)*Cos[c + d*x])/a^3 - (b*Cos[2*(c + d*x)])/(5*a^2) + Cos[3*(c +
d*x)]/(14*a))*Csc[c + d*x]^3*Sec[c + d*x]*(e*Sin[c + d*x])^(7/2))/(d*(a + b*Sec[c + d*x])) - ((b + a*Cos[c + d
*x])*Sec[c + d*x]*(e*Sin[c + d*x])^(7/2)*((2*(-100*a^3 + 98*a*b^2)*Cos[c + d*x]^2*(b + a*Sqrt[1 - Sin[c + d*x]
^2])*((b*(-2*ArcTan[1 - (Sqrt[2]*Sqrt[a]*Sqrt[Sin[c + d*x]])/(-a^2 + b^2)^(1/4)] + 2*ArcTan[1 + (Sqrt[2]*Sqrt[
a]*Sqrt[Sin[c + d*x]])/(-a^2 + b^2)^(1/4)] - Log[Sqrt[-a^2 + b^2] - Sqrt[2]*Sqrt[a]*(-a^2 + b^2)^(1/4)*Sqrt[Si
n[c + d*x]] + a*Sin[c + d*x]] + Log[Sqrt[-a^2 + b^2] + Sqrt[2]*Sqrt[a]*(-a^2 + b^2)^(1/4)*Sqrt[Sin[c + d*x]] +
 a*Sin[c + d*x]]))/(4*Sqrt[2]*Sqrt[a]*(-a^2 + b^2)^(3/4)) - (5*a*(a^2 - b^2)*AppellF1[1/4, -1/2, 1, 5/4, Sin[c
 + d*x]^2, (a^2*Sin[c + d*x]^2)/(a^2 - b^2)]*Sqrt[Sin[c + d*x]]*Sqrt[1 - Sin[c + d*x]^2])/((5*(a^2 - b^2)*Appe
llF1[1/4, -1/2, 1, 5/4, Sin[c + d*x]^2, (a^2*Sin[c + d*x]^2)/(a^2 - b^2)] + 2*(2*a^2*AppellF1[5/4, -1/2, 2, 9/
4, Sin[c + d*x]^2, (a^2*Sin[c + d*x]^2)/(a^2 - b^2)] + (-a^2 + b^2)*AppellF1[5/4, 1/2, 1, 9/4, Sin[c + d*x]^2,
 (a^2*Sin[c + d*x]^2)/(a^2 - b^2)])*Sin[c + d*x]^2)*(b^2 + a^2*(-1 + Sin[c + d*x]^2)))))/((b + a*Cos[c + d*x])
*(1 - Sin[c + d*x]^2)) + (2*(89*a^2*b - 70*b^3)*Cos[c + d*x]*(b + a*Sqrt[1 - Sin[c + d*x]^2])*(((-1/8 + I/8)*S
qrt[a]*(2*ArcTan[1 - ((1 + I)*Sqrt[a]*Sqrt[Sin[c + d*x]])/(a^2 - b^2)^(1/4)] - 2*ArcTan[1 + ((1 + I)*Sqrt[a]*S
qrt[Sin[c + d*x]])/(a^2 - b^2)^(1/4)] + Log[Sqrt[a^2 - b^2] - (1 + I)*Sqrt[a]*(a^2 - b^2)^(1/4)*Sqrt[Sin[c + d
*x]] + I*a*Sin[c + d*x]] - Log[Sqrt[a^2 - b^2] + (1 + I)*Sqrt[a]*(a^2 - b^2)^(1/4)*Sqrt[Sin[c + d*x]] + I*a*Si
n[c + d*x]]))/(a^2 - b^2)^(3/4) + (5*b*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, Sin[c + d*x]^2, (a^2*Sin[c + d*x
]^2)/(a^2 - b^2)]*Sqrt[Sin[c + d*x]])/(Sqrt[1 - Sin[c + d*x]^2]*(5*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, Sin[
c + d*x]^2, (a^2*Sin[c + d*x]^2)/(a^2 - b^2)] + 2*(2*a^2*AppellF1[5/4, 1/2, 2, 9/4, Sin[c + d*x]^2, (a^2*Sin[c
 + d*x]^2)/(a^2 - b^2)] + (a^2 - b^2)*AppellF1[5/4, 3/2, 1, 9/4, Sin[c + d*x]^2, (a^2*Sin[c + d*x]^2)/(a^2 - b
^2)])*Sin[c + d*x]^2)*(b^2 + a^2*(-1 + Sin[c + d*x]^2)))))/((b + a*Cos[c + d*x])*Sqrt[1 - Sin[c + d*x]^2]) + (
(-231*a^2*b + 210*b^3)*Cos[c + d*x]*Cos[2*(c + d*x)]*(b + a*Sqrt[1 - Sin[c + d*x]^2])*(((1/2 - I/2)*(a^2 - 2*b
^2)*ArcTan[1 - ((1 + I)*Sqrt[a]*Sqrt[Sin[c + d*x]])/(a^2 - b^2)^(1/4)])/(a^(3/2)*(a^2 - b^2)^(3/4)) - ((1/2 -
I/2)*(a^2 - 2*b^2)*ArcTan[1 + ((1 + I)*Sqrt[a]*Sqrt[Sin[c + d*x]])/(a^2 - b^2)^(1/4)])/(a^(3/2)*(a^2 - b^2)^(3
/4)) + ((1/4 - I/4)*(a^2 - 2*b^2)*Log[Sqrt[a^2 - b^2] - (1 + I)*Sqrt[a]*(a^2 - b^2)^(1/4)*Sqrt[Sin[c + d*x]] +
 I*a*Sin[c + d*x]])/(a^(3/2)*(a^2 - b^2)^(3/4)) - ((1/4 - I/4)*(a^2 - 2*b^2)*Log[Sqrt[a^2 - b^2] + (1 + I)*Sqr
t[a]*(a^2 - b^2)^(1/4)*Sqrt[Sin[c + d*x]] + I*a*Sin[c + d*x]])/(a^(3/2)*(a^2 - b^2)^(3/4)) + (4*Sqrt[Sin[c + d
*x]])/a + (4*b*AppellF1[5/4, 1/2, 1, 9/4, Sin[c + d*x]^2, (a^2*Sin[c + d*x]^2)/(a^2 - b^2)]*Sin[c + d*x]^(5/2)
)/(5*(a^2 - b^2)) + (10*b*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, Sin[c + d*x]^2, (a^2*Sin[c + d*x]^2)/(a^2 - b
^2)]*Sqrt[Sin[c + d*x]])/(Sqrt[1 - Sin[c + d*x]^2]*(5*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, Sin[c + d*x]^2, (
a^2*Sin[c + d*x]^2)/(a^2 - b^2)] + 2*(2*a^2*AppellF1[5/4, 1/2, 2, 9/4, Sin[c + d*x]^2, (a^2*Sin[c + d*x]^2)/(a
^2 - b^2)] + (a^2 - b^2)*AppellF1[5/4, 3/2, 1, 9/4, Sin[c + d*x]^2, (a^2*Sin[c + d*x]^2)/(a^2 - b^2)])*Sin[c +
 d*x]^2)*(b^2 + a^2*(-1 + Sin[c + d*x]^2)))))/((b + a*Cos[c + d*x])*(1 - 2*Sin[c + d*x]^2)*Sqrt[1 - Sin[c + d*
x]^2])))/(420*a^3*d*(a + b*Sec[c + d*x])*Sin[c + d*x]^(7/2))

Maple [A] (verified)

Time = 16.19 (sec) , antiderivative size = 772, normalized size of antiderivative = 1.50

method result size
default \(\frac {2 e b \left (-\frac {\sqrt {e \sin \left (d x +c \right )}\, e^{2} \left (\cos \left (d x +c \right )^{2} a^{2}-6 a^{2}+5 b^{2}\right )}{5 a^{4}}+\frac {e^{4} \left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) \left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{a^{2}}\right )^{\frac {1}{4}} \left (\ln \left (\frac {\sqrt {e \sin \left (d x +c \right )}+\left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{a^{2}}\right )^{\frac {1}{4}}}{\sqrt {e \sin \left (d x +c \right )}-\left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{a^{2}}\right )^{\frac {1}{4}}}\right )+2 \arctan \left (\frac {\sqrt {e \sin \left (d x +c \right )}}{\left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{a^{2}}\right )^{\frac {1}{4}}}\right )\right )}{4 a^{4} \left (-a^{2} e^{2}+b^{2} e^{2}\right )}\right )+\frac {\sqrt {\cos \left (d x +c \right )^{2} e \sin \left (d x +c \right )}\, a \,e^{4} \left (-\frac {-6 a^{4} \cos \left (d x +c \right )^{4} \sin \left (d x +c \right )+5 \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right ) a^{4}-28 a^{2} b^{2} \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )+21 b^{4} \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )+16 a^{4} \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )-14 a^{2} b^{2} \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )}{21 a^{6} \sqrt {\cos \left (d x +c \right )^{2} e \sin \left (d x +c \right )}}-\frac {b^{2} \left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) \left (-\frac {\sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {1}{1-\frac {\sqrt {a^{2}-b^{2}}}{a}}, \frac {\sqrt {2}}{2}\right )}{2 \sqrt {a^{2}-b^{2}}\, a \sqrt {\cos \left (d x +c \right )^{2} e \sin \left (d x +c \right )}\, \left (1-\frac {\sqrt {a^{2}-b^{2}}}{a}\right )}+\frac {\sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {1}{1+\frac {\sqrt {a^{2}-b^{2}}}{a}}, \frac {\sqrt {2}}{2}\right )}{2 \sqrt {a^{2}-b^{2}}\, a \sqrt {\cos \left (d x +c \right )^{2} e \sin \left (d x +c \right )}\, \left (1+\frac {\sqrt {a^{2}-b^{2}}}{a}\right )}\right )}{a^{6}}\right )}{\cos \left (d x +c \right ) \sqrt {e \sin \left (d x +c \right )}}}{d}\) \(772\)

[In]

int((e*sin(d*x+c))^(7/2)/(a+b*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

(2*e*b*(-1/5/a^4*(e*sin(d*x+c))^(1/2)*e^2*(cos(d*x+c)^2*a^2-6*a^2+5*b^2)+1/4*e^4*(a^4-2*a^2*b^2+b^4)/a^4*(e^2*
(a^2-b^2)/a^2)^(1/4)/(-a^2*e^2+b^2*e^2)*(ln(((e*sin(d*x+c))^(1/2)+(e^2*(a^2-b^2)/a^2)^(1/4))/((e*sin(d*x+c))^(
1/2)-(e^2*(a^2-b^2)/a^2)^(1/4)))+2*arctan((e*sin(d*x+c))^(1/2)/(e^2*(a^2-b^2)/a^2)^(1/4))))+(cos(d*x+c)^2*e*si
n(d*x+c))^(1/2)*a*e^4*(-1/21/a^6/(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)*(-6*a^4*cos(d*x+c)^4*sin(d*x+c)+5*(-sin(d*x
+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)*EllipticF((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))*a^4-28*a^2*b
^2*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)*EllipticF((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))+
21*b^4*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)*EllipticF((-sin(d*x+c)+1)^(1/2),1/2*2^(1/
2))+16*a^4*cos(d*x+c)^2*sin(d*x+c)-14*a^2*b^2*cos(d*x+c)^2*sin(d*x+c))-b^2*(a^4-2*a^2*b^2+b^4)/a^6*(-1/2/(a^2-
b^2)^(1/2)/a*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)/(
1-(a^2-b^2)^(1/2)/a)*EllipticPi((-sin(d*x+c)+1)^(1/2),1/(1-(a^2-b^2)^(1/2)/a),1/2*2^(1/2))+1/2/(a^2-b^2)^(1/2)
/a*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)/(1+(a^2-b^2
)^(1/2)/a)*EllipticPi((-sin(d*x+c)+1)^(1/2),1/(1+(a^2-b^2)^(1/2)/a),1/2*2^(1/2))))/cos(d*x+c)/(e*sin(d*x+c))^(
1/2))/d

Fricas [F(-1)]

Timed out. \[ \int \frac {(e \sin (c+d x))^{7/2}}{a+b \sec (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((e*sin(d*x+c))^(7/2)/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {(e \sin (c+d x))^{7/2}}{a+b \sec (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((e*sin(d*x+c))**(7/2)/(a+b*sec(d*x+c)),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(e \sin (c+d x))^{7/2}}{a+b \sec (c+d x)} \, dx=\int { \frac {\left (e \sin \left (d x + c\right )\right )^{\frac {7}{2}}}{b \sec \left (d x + c\right ) + a} \,d x } \]

[In]

integrate((e*sin(d*x+c))^(7/2)/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((e*sin(d*x + c))^(7/2)/(b*sec(d*x + c) + a), x)

Giac [F]

\[ \int \frac {(e \sin (c+d x))^{7/2}}{a+b \sec (c+d x)} \, dx=\int { \frac {\left (e \sin \left (d x + c\right )\right )^{\frac {7}{2}}}{b \sec \left (d x + c\right ) + a} \,d x } \]

[In]

integrate((e*sin(d*x+c))^(7/2)/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((e*sin(d*x + c))^(7/2)/(b*sec(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(e \sin (c+d x))^{7/2}}{a+b \sec (c+d x)} \, dx=\int \frac {\cos \left (c+d\,x\right )\,{\left (e\,\sin \left (c+d\,x\right )\right )}^{7/2}}{b+a\,\cos \left (c+d\,x\right )} \,d x \]

[In]

int((e*sin(c + d*x))^(7/2)/(a + b/cos(c + d*x)),x)

[Out]

int((cos(c + d*x)*(e*sin(c + d*x))^(7/2))/(b + a*cos(c + d*x)), x)